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SUMMARY

A semi-implicit finite difference model based on the three-dimensional shallow water equations is
modified to use unstructured grids. There are obvious advantages in using unstructured grids in problems
with a complicated geometry. In this development, the concept of unstructured orthogonal grids is
introduced and applied to this model. The governing differential equations are discretized by means of
a semi-implicit algorithm that is robust, stable and very efficient. The resulting model is relatively simple,
conserves mass, can fit complicated boundaries and yet is sufficiently flexible to permit local mesh
refinements in areas of interest. Moreover, the simulation of the flooding and drying is included in a
natural and straightforward manner. These features are illustrated by a test case for studies of
convergence rates and by examples of flooding on a river plain and flow in a shallow estuary. Copyright
© 2000 John Wiley & Sons, Ltd.

KEY WORDS: finite difference; finite volume; semi-implicit; shallow water; three-dimensional; unstruc-
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1. INTRODUCTION

A practical numerical method to solve the two-dimensional shallow water equations has been
formulated using a semi-implicit time integration, a finite difference spatial discretization and
an Eulerian–Lagrangian approximation to advection [1]. The resulting model has been shown
to be numerically stable, very efficient and has been successfully used in a number of
applications, e.g. [2,3]. Recently, the two-dimensional model has been extended to the
three-dimensional shallow water equations [4,5]. In the three-dimensional model, the pressure
gradient term in the momentum equations and the divergence term in the vertically integrated
continuity equation are treated implicitly to remove stability constraints. Numerical experi-
ments with the three-dimensional model have shown that the algorithm is also stable and
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highly efficient. Moreover, when only one vertical layer is specified, this method reduces to the
semi-implicit method for the two-dimensional vertically integrated shallow water equations.
The resulting two- and three-dimensional models, however, have been restricted to using
uniform rectangular grids in the horizontal plane. Our purpose here is to extend this model to
use a more flexible unstructured grid that can be used to discretize arbitrary geometries.

Numerical methods using orthogonal curvilinear co-ordinates are relatively simple because
no new terms are introduced by the curvilinear transformation, e.g. [6]. However, orthogonal
structured grids are not sufficiently flexible to fit an arbitrary geometry. On the other hand,
non-orthogonal curvilinear co-ordinates allow for higher flexibility but introduce new terms
that often result in larger discretization errors and/or instability, see [7] and [8, pp. 200–221].
The importance of boundary fitting has also been investigated in terms of finite difference
methods derived for unstructured triangular grids [9]. In this case, the two-dimensional shallow
water equations have been discretized by explicit schemes. Thus, the time step was restricted
to comply with the Courant–Friedrichs–Lewy (CFL) stability condition. As an alternative to
finite difference methods, several finite element algorithms using triangular elements are
currently being studied and applied [10,11]. The two-dimensional model described in [10] is
very similar in concept to the development presented here, except that it uses a finite element
rather than a finite difference spatial discretization. The elements used are the Raviart–
Thomas elements of lowest order with the result that the models differ in the formulation of
the pressure gradient terms.

In order to obtain an efficient finite difference model for the three-dimensional shallow
water equations, an unstructured grid with special properties is introduced. The name
unstructured orthogonal grid is used to denote this special grid. Then, a semi-implicit finite
difference scheme is modified and adapted to this grid. The advection, Coriolis and horizontal
friction terms are discretized by using an Eulerian–Lagrangian approach. The resulting
algorithm conserves mass and is computationally competitive with the corresponding semi-
implicit finite difference scheme for uniform rectangular grids. Moreover, this algorithm has
more flexibility in fitting complicated boundaries. In the particular case that only one vertical
layer is specified, this algorithm is consistent with the vertically integrated, two-dimensional
shallow water equations in the same manner as the corresponding structured grid model [5].
Preliminary results that were reported during the development of the model are presented in
[12]. The resulting scheme is suitable for the simulation of complex three-dimensional flows
using a fine spatial resolution and relatively large time steps. The present formulation allows
for the simulation of flooding and drying of low-lying areas in a straightforward manner.

2. GOVERNING EQUATIONS

The governing three-dimensional, primitive variable equations describing constant density, free
surface flows can be derived from the Navier–Stokes equations after averaging over turbulent
time scales and under the simplifying assumption that the pressure is hydrostatic [4]. The
resulting equations, the three-dimensional version of the shallow water equations, have the
following form:
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where u(x, y, z, t), 6(x, y, z, t) and w(x, y, z, t) are the velocity components in the horizontal
x-, y- and vertical z-directions respectively; t is the time; h(x, y, t) is the water surface
elevation measured from the undisturbed water surface; f is the Coriolis parameter, g is the
gravitational acceleration and nh and nv are the coefficients of horizontal and vertical eddy
viscosity respectively. These coefficients can be derived from an appropriate turbulence closure
model. Here, it will be assumed that nh and nv are prescribed non-negative functions of space
and time, and no specific closure model is used.

Integrating the continuity equation over depth and using a kinematic condition at the free
surface leads to the following free surface equation:
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where h(x, y) is the water depth measured from the undisturbed water surface so that
H(x, y, t)=h(x, y)+h(x, y, t) is the total water depth.

The boundary conditions at the free surface are specified by the prescribed wind stresses as

nv (u
(z

=gT(ua−u), nv (6

(z
=gT(6a−6), at z=h, (5)

where ua and 6a are the wind velocity components in the x- and y-directions respectively, and
gT is a non-negative wind stress coefficient that depends on the wind speed. At the sediment–
water interface, the bottom friction is specified by

nv (u
(z

=gBu, nv (6

(z
=gB6, at z= −h, (6)

where gB is a non-negative bottom friction coefficient. Typically, gB can be given by the
Manning–Chezy formula, or by fitting it to a turbulent boundary layer.

3. ORTHOGONAL UNSTRUCTURED GRID

Before discretizing Equations (1)–(6), the horizontal (x, y) domain is covered by a grid
consisting of a set of non-overlapping convex polygons, usually either triangles or quadrilater-
als. Each side of a polygon is either a boundary line or a side of an adjacent polygon.
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Definition
A grid is said to be an unstructured orthogonal grid if within each polygon a point (hereafter
called center) can be identified in such a way that the segment joining the centers of two
adjacent polygons and the side shared by the two polygons, have a non-empty intersection and
are orthogonal to each other (see Figure 1). A structured orthogonal grid has the same definition
except that it applies to structured grids.

The center of a polygon does not necessarily coincide with its geometrical center. Examples
of structured orthogonal grids are, of course, the rectangular finite difference grids, as well as
a grid of uniform equilateral triangles. In these particular cases, the center of each polygon can
be identified with its geometrical center. A non-uniform structured orthogonal grid can be
obtained by projecting in the (x, y) domain a uniform grid derived from an appropriate
orthogonal curvilinear transformation. In general, however, a structured orthogonal grid
derived from curvilinear transformation is not sufficiently flexible to fit an arbitrary spatial
domain.

An example of an unstructured orthogonal grid is the Delaunay triangulation of a set of
points Qi, i=1, 2, . . . , N, provided that the triangulation includes only acute triangles. In this
case, the centers of the triangles are identified by the vertices of the corresponding Dirichlet
tessellation [13]. Similarly, the Voronoi regions of a Dirichlet tessellation determined by Qi also
form an orthogonal grid, with Qi being the centers of the polygons. Using co-volumes defined
by Voronoi–Delaunay triangulation, a similar orthogonality condition has been proposed for
the solution of the incompressible Navier–Stokes equations [14]. With the definition given
above, an irregular discretization with quadrilaterals can also be used to form an unstructured
orthogonal grid.

Once the (x, y) domain has been covered with a structured or unstructured orthogonal grid,
one has Np polygons, each having an arbitrary number of sides Si]3, i=1, 2, . . . , Np. Let Ns

be the total number of sides in the grid, and let lj, j=1, 2, . . . , Ns be the length of each side.
The sides of the ith polygon are identified by an index j(i, l), l=1, 2, . . . , Si, so that

Figure 1. Orthogonal unstructured grid.
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15 j(i, l)5Ns, i=1, 2, . . . , Np. Similarly, the two polygons that share the jth side of the grid
are identified by the indices i( j, 1) and i( j, 2) so that 15 i( j, 1)5Np and 15 i( j, 2)5Np,
j=1, 2, . . . , Ns. The non-zero distance between the centers of two adjacent polygons that
share the jth side is denoted by dj (see Figure 1).

Along the vertical direction a simple finite difference discretization, not necessarily uniform,
is adopted. By denoting a given level surface with zk+1/2, the vertical discretization step is
defined by Dzk=zk+1/2−zk−1/2, k=1, 2, . . . , Nz.

The three-dimensional space discretization consists of prisms whose horizontal faces are the
polygons of a given orthogonal grid and whose height are Dzk. The discrete velocities and
water surface elevation are defined at staggered locations as follows. The water surface
elevation h i

n, assumed to be constant within each polygon, is located at the center of the ith
polygon; the velocity component normal to each face of a prism, assumed to be constant over
the face, is defined at the point of intersection between the face and the segment joining the
centers of the two prisms that share the face. Finally, the water depth hj is specified, and
assumed constant, on each side of a polygon.

4. A SEMI-IMPLICIT NUMERICAL METHOD

A semi-implicit scheme is used in order to obtain an efficient numerical algorithm whose
stability is independent of the free surface wave speed, wind stress, vertical viscosity and
bottom friction. The water surface elevation in the horizontal momentum equations (1) and
(2), and the velocity in the free surface equation (4), are discretized by the u method [5]. In
addition, the wind stress term, the vertical friction term, and the bottom friction term are
discretized implicitly for stability.

Of course, Equations (1)–(6) are invariant under solid rotation of the x- and y-axis on the
horizontal plane. Using an unstructured orthogonal grid, a consistent semi-implicit finite
difference discretization for the velocity component normal to each vertical face of a prism can
be derived from Equations (1) and (2) and takes the following form:

uj,k
n+1=Fuj,k

n −g
Dt
dj

[u(h i( j,2)
n+1−h i( j,1)

n+1)+ (1−u)(h i( j,2)
n −h i( j,1)

n )]

+
Dt

Dz j,k
n

�
n j,k+1/2

v uj,k+1
n+1 −uj,k

n+1

Dz j,k+1/2
n −n j,k−1/2

v uj,k
n+1−uj,k−1

n+1

Dz j,k−1/2
n

n
, k=mj, mj+1, . . . , Mj

n,

(7)

where uj,k
n denotes the horizontal velocity component normal to the jth side of the grid, at

vertical level k and time step n. The positive direction for uj,k
n has been chosen to be from

i( j, 1) to i( j, 2). F is an explicit finite difference operator, which accounts for the contributions
from the discretization of the Coriolis, advection and horizontal friction terms. A particular
form for F can be given in several ways, such as by using an Eulerian–Lagrangian scheme, e.g.
[1,4,15]. When the Coriolis, advection and horizontal friction terms are neglected in the above
scheme, F reduces to the identity operator, i.e. Fuj,k

n =uj,k
n . Including all the above terms, and

by using an Eulerian–Lagrangian discretization, a form for F can be chosen as
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Fuj,k
n =

[1−u(1−u)f 2Dt2]u*j,k+ fDt6*j,k
1+u2f 2Dt2 +DtnhDhu*j,k, (8)

where u*j,k denotes the horizontal velocity component normal to the jth side of the grid and 6*j,k
is the tangential velocity component in a right-hand co-ordinate system. Both components are
interpolated at time tn at the end of the Lagrangian trajectory based on the values at adjacent
grid points. The Lagrangian trajectory is calculated by integrating the velocity backwards in
time from node ( j, k) at tn+1 to its location at time tn. Dh is the horizontal Laplacian
discretization.

For stability, the implicitness factor u has to be chosen in the range 1/25u51 [5].
Moreover, the vertical space increment Dz j,k

n is defined as the distance between two consecutive
level surfaces, except near the bottom and near the free surface, where Dz j,k

n is the distance
between a level surface and the bottom or free surface respectively. Thus, in general, Dz j,k

n

depends on the spatial location, and near the free surface it also depends on the time step. The
vertical space increment Dz j,k

n is also allowed to vanish in order to account for wetting and
drying. Of course, the momentum equation (7) is not defined at the grid points characterized
by Dz j,k

n =0. Finally, mj and Mj
n, 15mj5Mj

n5Nz, denote the lower and upper limit for the
k index representing the bottom and the top finite difference stencil respectively. As indicated,
m and M depend on their spatial location and M may also change with the time level to
account for the free surface dynamics. For notational simplicity, the subscript and the
superscript to mj and Mj

n will be omitted in the following development.
The values of uj,k

n+1 above the free surface and below the bottom in Equation (7) are
eliminated by means of the boundary conditions (5) and (6), which yield the following
difference formulae:

n j,M+1/2
v uj,M+1

n+1 −uj,M
n+1

Dz j,M+1/2
n =gT

n+1(ua
n+1−uj,M

n+1) (9)

and

n j,m−1/2
v uj,m

n+1−uj,m−1
n+1

Dz j,m−1/2
n =gB

n+1uj,m
n+1. (10)

A semi-implicit finite volume discretization for the free surface equation (4) at the center of
each polygon is taken to be

Pih i
n+1=Pihi−uDt %

Si

l=1

�
si,llj(i,l) %

M

k=m

Dz j(i,l),k
n u j(i,l),k

n+1 n
− (1−u)Dt %

Si

l=1

�
si,llj(i,l) %

M

k=m

Dz j(i,l),k
n u j(i,l),k

n n
, (11)

where Pi denotes the area of the ith polygon; si,l is a sign function associated with the
orientation of the normal velocity defined on the lth side of the polygon i. Specifically, si,l=1
if a positive velocity on the lth side corresponds to outflow, si,l= −1 if a positive velocity on
the lth side corresponds to inflow to the ith water column. Thus, si,l can be written as
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si,l=
i [ j(i, l), 2]−2i+ i [ j(i, l), 1]

i [ j(i, l), 2]− i [ j(i, l), 1]
. (12)

Equations (7) and (11) constitute a linear system of at most NzNs+Np equations. This
system has to be solved at each time step in order to calculate the new field variables uj,k

n+1 and
hi

n+1 throughout the flow domain.

5. SOLUTION ALGORITHM

Since a linear system of NzNs+Np equations can be quite large, even for modest values of Nz,
Ns and Np, the system of Equations (7) and (11) is first decomposed into a set of Ns

independent tridiagonal systems of Nz equations and one linear system of Np equations.
Specifically, upon multiplication by Dz j,k

n , and after including the boundary conditions (9) and
(10), Equations (7) and (11) are first written in matrix form as

Aj
nUj

n+1=Gj
n−ug

Dt
dj

[h i( j,2)
n+1−h i( j,1)

n+1]DZj
n, (13)

Pih i
n+1=Pih i

n−uDt %
Si

l=1

si,llj(i,l)[DZj(i,l)
n ]ÝUj(i,l)

n+1− (1−u)Dt %
Si

l=1

si,llj(i,l)[DZj(i,l)
n ]ÝUj(i,l)

n , (14)

where U, DZ, G and A are defined as follows:
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Æ

È
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Aj
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n +gT
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with aj,k91/2
n =n j,k91/2

v Dt/Dz j,k91/2
n .

Formal substitution of the expressions for Uj
n+1 from Equation (13) into (14) yields a

discrete wave equation for hn+1, which is given by

Pih i
n+1−gDt2u2 %

Si

l=1

si,llj(i,l)

dj(i,l)

[(DZ)ÝA−1DZ]j(i,l)n (h i[ j(i,l),2]
n+1 −h i[ j(i,l),1]

n+1 )

=Pih i
n− (1−u)Dt %

Si

l=1

si,llj(i,l)[(DZ)ÝU]j(i,l)n −uDt %
Si

l=1

si,llj(i,l)[(DZ)ÝA−1G]j(i,l)n . (15)

Since matrix Aj
n is positive definite, its inverse is also positive definite and therefore

[(DZ)ÝA−1DZ]jn is a non-negative number. Hence, Equation (15) constitutes a linear, sparse
system of Np equations for h i

n+1. This system is strongly diagonally dominant, symmetric and
positive definite. Thus, it has a unique solution that can be efficiently determined by a
preconditioned conjugate gradient method, e.g. [17].

Once the new free surface location has been calculated, Equation (13) constitutes a linear,
tridiagonal system for Uj

n+1. Each of these tridiagonal systems is independent of the others
and is symmetric and positive definite. Thus, they can be conveniently solved by a direct
method to determine Uj

n+1 throughout the computational domain.
Finally, a finite volume discretization of the continuity equation (3) yields the vertical

component of the velocity at the new time level. Specifically, by setting wi,m−1/2
n+1 =0, the

vertical velocity component on each water column is determined recursively by

wi,k+1/2
n+1 =wi,k−1/2

n+1 −
1
Pi

%
Si

l=1

si,llj(i,l)Dz j(i,l),k
n u j(i,l),k

n+1 , k=m, m+1, . . . , M−1. (16)

The numerical algorithm presented above includes the simulation of flooding and drying. At
each time step the new water depths Hj

n+1 at the polygon’s sides are defined as

Hj
n+1=max[0, hj+h i( j,1)

n+1, hj+h i( j,2)
n+1]. (17)

The vertical grid spacings DZj
n+1 are updated accordingly. Thus, an occurrence of a zero value

for the total depth Hj
n+1 implies that all the vertical faces separating prisms between the water

column i( j, 1) and i( j, 2) are dry and may become wet at a later time when Hj
n+1 becomes

positive. The height of a dry face and the corresponding normal velocity are taken to be zero.
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An interesting aspect of the present algorithm is given by the fact that the size and the
structure of the linear system given by the discrete wave equation (15) is independent from the
vertical resolution. The vertical resolution affects the assembly of Equation (15) and the
number of equations for normal velocity. Moreover, since a major part of the computational
effort is required to determine the free surface elevation from Equation (15), an arbitrarily fine
vertical resolution can be used with an acceptable increase of the corresponding computing
time. On the other hand, in the case where only one vertical layer is used, one has Nz=1 and
Dz j,1

n =Hj
n. The equations then reduce to consistent discretization of the two-dimensional

shallow water equations in the same manner as the model with structured grids [4]. Thus, a
two-dimensional semi-implicit algorithm for the vertically averaged shallow water equations is
obtained, as a particular case, from the general three-dimensional model by specifying only one
vertical layer.

6. PROPERTIES OF THE METHOD

The algorithm developed above is relatively simple, yet general and robust. A number of
interesting properties concerning mass conservation, numerical accuracy, stability and general-
ity are discussed below.

(a) In the present scheme, the local mass conservation is assured by the finite volume form
(16) used to discretize the incompressibility condition (3). Also, local two-dimensional and
global mass conservation is guaranteed by Equation (11), which is a finite volume
discretization of the free surface equation (4).

(b) When the polygons of the horizontal mesh are uniform rectangles, this algorithm reduces
to the semi-implicit finite difference model presented in [4] and further analyzed and
improved in [5]. The performance and the usefulness of such a model has been widely
documented, e.g. [2,3,16]. The present algorithm represents an extension of the uniform
grid finite difference formulation to unstructured grids, which adds considerable flexibility
to the model.

(c) The highest numerical accuracy is obtained when a uniform grid, such as equilateral
triangles or uniform rectangles, is used. In these cases, the normal velocity on each side of
the polygon is located at the center point of the side and the centers of two adjacent
polygons are equally spaced from the common side. Consequently, the discretization error
for the gravity wave terms in Equations (13) and (14) is second-order in space. Moreover,
these equations are also second-order accurate in time for u=1/2. Since a uniform grid,
in general, does not fit the boundaries and does not allow for local mesh refinements, an
unstructured, non-uniform grid can be used with a somewhat larger discretization error.
This error can be minimized when the polygon size and shape vary gradually through the
flow domain [18].

(d) The stability analysis of the semi-implicit finite difference method (13) and (14) has been
carried out in [5] for the case of a uniform rectangular grid and under the assumptions
that the governing differential equations (1)–(4) are linear, with constant coefficients and
defined on an infinite horizontal domain, or with periodic boundary conditions on a finite
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V. CASULLI AND R.A. WALTERS340

domain. The analysis shows that the method is stable in the von Neumann sense if
1/25u51, and if the operator F used to discretize the Coriolis, advection and horizontal
friction terms is itself stable. Computational results on several test cases have indicated
that no additional stability restrictions are required when a non-uniform unstructured
mesh is used. Thus, the stability of the present algorithm is independent of the celerity,
wind stress, vertical viscosity and bottom friction. It does depend on the discretization of
the advection and horizontal friction terms. When an Eulerian–Lagrangian method is
used for the explicit terms, a mild limitation on the time step depends on the horizontal
viscosity coefficient and on the smallest polygon size. This method becomes uncondition-
ally stable when the horizontal friction terms are neglected. Use of Eulerian–Lagrangian
discretization is always recommended because a higher accuracy is obtained [1,4,15].

(e) When only one vertical layer is specified (Nz=1), then Dz j,1
n =Hj

n and the present
algorithm reduces to a semi-implicit scheme that is consistent with the two-dimensional,
vertically integrated shallow water equations. This property of the present algorithm leads
to a general purpose computer code that can be used for one-dimensional channels,
two-dimensional vertically averaged problems, and three-dimensional problems. More
importantly, when the three-dimensional model is applied to a typical coastal embayment
characterized by a mixture of channels and bays, these different geometric features are
connected as part of the formulation without any special constraints. An example is a
shallow coastal plain estuary with deep channels that are connected to the channels in a
river delta.

(f) The two-dimensional finite element version of this model [10] has a similar structure to the
model developed here, with the same finite volume form of the continuity equation, a
semi-implicit time integration, and Eulerian–Lagrangian advection. The two models end
up with an identical structure to the discretized wave equation; however, the approxima-
tion to the pressure gradient term in the momentum equations is different because of the
different approximation methods used. As noted below, this difference leads to different
convergence rates for a linear solution on a regular grid but similar results for irregular
grids.

7. COMPUTER APPLICATIONS

The model is applicable to realistic field scale problems with different flow regimes and
complexity. There are three test problems presented here. The first is a test case with an
analytical solution that is used to assess the optimal convergence rates that can be obtained.
The second problem is a simulation of a two-dimensional flood that spreads over the Big Lost
River flood plain and is used to assess the performance of the model (particularly the wetting
and advection algorithms) in a highly irregular but realistic geometry. Finally, the flow
simulation in the Jade–Weser Estuary shows the suitability of the present algorithm for the
simulations of complex, three-dimensional environmental flows using an extremely fine spatial
resolution and a relatively large time step.
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7.1. Tidal channel

The geometry for this test case is a one-dimensional bay with length L=4 km and depth
h=10 m. The water surface elevation is forced at one end with a periodic function with an
amplitude a=0.001 m and period of T=3600 s. There is no bottom friction, advection or
Coriolis effects included. The small amplitude leads to a linear response for comparison with
a solution of the linear equations. The analytical solution for this case is one-dimensional and
is derived relatively easily (see [19], p. 191). It is

u=
ac
h

sin(kx)
cos(kL)

sin(vt), (18)

h=a
cos(kx)
cos(kL)

cos(vt), (19)

subject to the boundary conditions u=0 at x=0 and h=a cos(vt) at x=L, where v=2p/T
is the angular frequency, c= (gh)1/2 is the celerity and k=v/c is the wave number.

The standard error between the model solution and this analytical solution is calculated at
the computational nodes for various grid refinements to show the convergence rate as the grid
is refined and the time step is reduced.

The channel is discretized with equilateral triangles, one triangle wide and a variable
number of triangles in length. From the base grid of three triangles (2 degrees of freedom
(df) at sea level), the grid was refined to 4, 6 and 8 df. The time integration is centered
with u=1/2. The results in Figure 2 indicate that, for a regular grid, the model converges
with the optimal rates predicted from theory, O(l2). Refining the time step from 600 to

Figure 2. Convergence rates with grid refinement (left) and with time step refinement (right).
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60 s, the results indicate that the time discretization is also second-order as expected from
theory (see Figure 2).

On the other hand, the L2 error norm is applicable to the finite element version of this
model, where the standard error is integrated over the spatial domain. Previous results [10]
show that the finite element model converges at O(l) as predicted by theory. Theory also
indicates that there is a superconvergence for this regular grid where the convergence rate is
O(l2).

For irregular grids, these optimal convergence rates deteriorate to O(l) because the
approximation for gradients are no longer second-order accurate. Carefully grading the size
of the elements and maintaining a nearly equilateral shape helps to mitigate this deteriora-
tion.

7.2. Big Lost Ri6er flood

The Big Lost River grid was originally developed to determine the inundation area in this
reach for several floods with fixed discharges. Subsequently, simulations using this grid
have been used to test the stability and efficiency of several numerical models. Here, we use
this grid to test the model developed herein.

The reach of the Big Lost River, ID, USA, covers an area of about 1×1.2 km2. The
outflow elevation in the lower right part of the grid is maintained at a height of 0 m with
respect to the local co-ordinate system, which corresponds to an elevation of 1540 m from
mean sea level (MSL) in the global co-ordinate system. The topography with respect to the
local co-ordinates is shown in Figure 3, where the local elevation ranges from −3 to
8 m. There is a river channel that curves along the top boundary with several adjacent
basins that are surrounded by higher elevations. The grid for this reach (Figure 4) con-
tains Np=12622 triangles and Ns=19042 sides. It was generated using the methods de-
scribed in [20]. The forcing condition is a discharge of 206 m3 s−1, which is injected at the
upper left end of the river channel. The simulation is two-dimensional (Nz=1) and starts
from rest with a water surface elevation of 0 m. For this simulation, f=0. Moreover, since
u=1/2 is at the limit of the stability range, the value u=0.6 has been chosen to ensure
stability.

The large discharge applied suddenly creates a flood wave that moves down the channel
causing rapid inundation of the low-lying areas and flows that are almost critical. As an
example, the water surface elevation obtained after 8 min of simulated time with a time
step Dt=10 s is characterized by a train of waves that emanate from a constriction in the
flow (Figure 5). The velocity field at the constriction shows an eddy on the inside of the
major bend and another eddy where the main flow passes the flooded area on the left
(Figure 6). These are common features that are expected in these types of flow.

The flow is advection-dominated, such that the major part of the force balance is be-
tween advection and the pressure gradient force when the simulation approaches a steady
state. This can be seen in the results where the acceleration of the flow through constric-
tions causes the large inundation areas above the constrictions. Numerous simulations
with several models have shown that, without advection included, the results are entirely
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Figure 3. Topography for the Big Lost River reach.

different and show a lowered water surface elevation and unrealistically high velocities.
Because of the strong advective effects, the flow is relatively insensitive to the bottom friction
coefficient. Thus, this problem is a rather severe test case for numerical models [10].

Figure 4. Triangular grid for the Big Lost River reach.
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Figure 5. Water levels obtained after 8 min of simulated time.

Figure 6. Velocity at the constriction obtained after 8 min of simulated time.

7.3. Jade–Weser Estuary

The last example is circulation in the Jade–Weser Estuary, located along Germany’s North
Sea coast. The water flow is complicated because of a highly irregular topography, the
presence of tidal flats and man-made structures, large tidal range, strong winds, and a
relatively large fresh water input. The Jade–Weser Estuary grid covers an area of about 1974
km2 and has a maximum depth from MSL of about 28 m (see Figure 7).

The grid for the Jade–Weser Estuary was generated at Bundesanstalt für Wasserbau
(BAW), Hamburg. It has a very fine resolution, with Np=150286 irregular triangles, whose
size varies from 10 to 80068 m2. The total number of sides is Ns=228655. The use of an
unstructured orthogonal grid for this site enables accurate resolution of the flow region,
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Figure 7. Bathymetry of the Jade–Weser Estuary (left) and water surface elevation during flood (right).

including detailed representation of man-made structures and narrow branches of the Weser
River.

In the present simulations, the flow is driven by a constant fresh water input of 180 m3 s−1

from the Weser River, and by a surface elevation prescribed at the open boundary with the
North Sea. These boundary conditions were interpolated from field data and include the 13
days period starting at 14:30 h on 12 June 1990. At the open boundary, the tidal amplitudes
are of the order of 1.25 m and are dominated by the M2 (12.42 h) constituent. The time step
is Dt=300 s, the duration of the simulation is 13 days, and the implicitness factor is u=0.6.

Three different runs have been made corresponding to a two-dimensional simulation with
Nz=1 and three-dimensional simulations with Nz=6 and Nz=60. The corresponding vertical
resolution is Dz j

n=Hj
n, Dz j,k

n 55 m and Dz j,k
n 50.5 m respectively. Table I summarizes the total

number of active prisms (Np
3D), the total number of horizontal velocity points (N s

3D) and the
ratio R= (real time)/(CPU time), for each case. The simulations were performed on a 500
MHz DEC Alpha 21164, which has a SpecFP 95 rating of 17.8. The largest amount of CPU
time is spent for determining the free surface elevation in the system of Equation (15), and for
computing the Lagrangian trajectories needed to approximate the advection terms with an

Table I. The model’s performance on the Jade–Weser Estuary

Np
3D N s

3D R

Nz=1 150 286 228 655 10.34
257 442 370 705Nz=6 7.66

3.672 466 9261 740 356Nz=60
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Eulerian–Lagrangian method. The computational effort needed for solving system (15) is
independent from Nz, while the CPU time needed for the advection terms is proportional to
N s

3D.
Figure 7 shows the computed water surface elevation during the flood phase, obtained

with Nz=60 at a time when the specified water surface elevation at the open boundary
with the North Sea is near zero. There are extensive mud flats that wet and dry during the
tidal cycle. The dark areas in the right panel of Figure 7 show the areas of water that have
been trapped by the falling tide. There is a considerable phase difference between the open
boundary and the Weser River.

Figure 8 presents characteristic plots of time series for sea level. The station with the
smallest amplitude is near the center of the open boundary; the station with the intermedi-
ate amplitude is at the mouth of the Weser River, and the station with largest amplitude is
about two-thirds of the way upstream of the Weser River in Figure 7. Note the increase in
amplitude and a phase lag with increasing distance from the open boundary. A comparison
between observations and model results shows that the model duplicates this behavior quite
well. In addition, note the distortion of the tidal wave as the wave progresses further
upstream the Weser River. Again the model produces a good representation of this non-lin-
ear behavior.

The surface velocity distribution at the start of the ebb tide at the mouth of the Weser
River is shown in Figure 9. The flow in the shallow areas along the channel has changed
to ebb while the flow in the main channel is still on flood. This is a common feature in
estuaries and tidal rivers, and is readily reproduced by the model. The plot in the right
panel of Figure 9 shows the flow at 12 m below the surface in the channel. The pattern of
velocity at the start of the flood cycle is similar to the pattern shown here except that the
velocity directions are reversed and more dry area is exposed because of the lower water
level. Vertical profiles of velocity at various points in the grid show a typical boundary
layer profile that changes direction over the tidal cycle [12].

Figure 8. Sea level variation at three locations: (a) near the open boundary, (b) at the mouth of the
Weser River, and (c) upstream. The heavy lines are the observations and the light lines are model results.
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Figure 9. Horizontal velocity near the mouth of the Weser River. Surface flow (left), flow at 12 m below
the surface (right).

8. CONCLUSIONS

A semi-implicit algorithm for the three-dimensional shallow water flow has been derived,
discussed and applied. The horizontal discretization consists of an orthogonal unstructured
grid that provides a great amount of flexibility for fitting boundaries and for local mesh
refinements. The resulting model is numerically stable, relatively simple and very efficient. In
the particular case that only one vertical layer is specified, this algorithm solves the vertically
integrated, two-dimensional shallow water equations. Computationally, the resulting scheme
conserves mass and is suitable for the simulations of complex one-, two- and three-dimensional
hydrostatic flows using fine spatial resolution and relatively large time steps. The present
formulation allows for the simulation of flooding and drying in a straightforward manner. The
computed results for the three applications verify the performance and robust nature of the
model.
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